The University of Reading

Department of Computer Science

School of Systems Engineering

CS3Q2 – Computer Science Project

Final Project Report

Paid To Chat

Karsten Øster Lundqvist
Supervisor: Dr Michael Evans
18th of April 2005
Contents:

Abstract
3

1. Introduction
4

2. Theory of Natural Language Processing
5
3. Analysis
6
4. Requirements Analysis Specification
8
4.1. General Description
8

4.2. Functional Requirements
9

4.3. Interface Requirements
12

4.4. Performance Requirements
13
4.5. Other non-functional attributes
13

5. Design
14

5.1. Client plug-in
15

5.1.1. Client events
15

5.1.2. Description of client procedures
17

5.1.3. Client datastructures
17
5.2. Banner server
18

5.2.1. Usecases
18

5.2.2. Sequence diagrams
21

5.2.3. Methods
24
5.2.4 Data Structures Summary
25

5.3. Chatbot
26

5.3.1. Chat Interpreter
26

5.3.1.1. Sequence Diagrams
26

5.3.1.2. Methods
28

5.3.2. AIML
29

5.4. Database
33

5.5. Discussion of design process
34

6. Development and Implementation
35

6.1. Chat Client
36

6.2. Banner server
37

6.3. Chatbot interpreter
38

6.4. Chatbot AIML code
40

7. Testing
42

8. Costing
44

9. Conclusion
46

10. References
48

11. Bibliography
48
Abstract

The aim of this project is to build the core functionalities of an imaginary company. The company provides an advertisement service, where advertisers send banners to users, while they are chatting, using the chat client Gaim. The service includes a chat robot, which every now a then asks the users questions about the banners they have seen, to explore whether they have seen them or not. At the same time the chat robot can act as a salesman promoting the advertised services.

Throughout the project a requirements analysis was created together with a design, which in turn resulted in an implementation of a:

· Banner server, which sends out the banners.

· Plug-in for the Gaim chat client, which receives the banner messages and provides feedback to the banner server, if the client clicks the banner.

· Chat robot implemented using the techniques and theories made by Dr Richard S. Wallace. His theory explores the Zipf curve distribution of natural language by making response patterns to expected inputs from users based on the situation of the chat. These response structures are built using his AI computer language AIML, which is an interpreted language. The interpreter used is called ProgramD and to use this program an interface between ProgramD and the chat protocol Jabber was implemented. The response structures were obviously implemented too.

· Database to support the banner server and chat robot was build by using mySQL.

These are all the core functionalities of the company. The more commercial aspects of the service was left out of this project, such as user friendliness, easy advertisement creation and exploration of user interests and usage of this knowledge.

The main goals of the project has been implemented, the choice of using AIML made it possible to make a chat robot in the scope of this project. The more academic approach using a statistical parser was not used, as this would not be a feasible solution in the time provided.
1. Introduction
The purpose of this project is to design and implement a unique imaginary service on the Internet. The idea behind the service is to send banners to the users of the service, while they are chatting with their friends and colleagues, as they would normally do. Every now and then the users will be asked questions about the banners, by a chat robot (chatbot), to verify that they are observant of the banners. The users can also ask the chatbot questions about the advertised companies and services to gain more knowledge of them, hence the chatbot will be acting as a salesman of the advertising companies. The chatbot should be using natural language. The incentive for the users to actually use the service would be to get paid for doing it, however this service is imaginary, and would probably have been a good idea in 1998 before the dotcom crash, so the only expectation that this project has of the users is that they are there, and that they want to be able to use they chat service as normal parallel to the service offered.

To achieve this, a client/server system will be made, where the client-side is a Gaim plug-in, which gives the capabilities to show the banner ads sent by the server according to the users’ interests, age and demographics.

There will be 2 types of interactions with the users: Banner ads and interactive chat, which are chat sent by a chatbot, which will be chatting with the users about the banner ads they receive to ensure that they have seen them, in this process the chatbot will be promoting the products advertised. The chat robot could possibly be used to build a frequently used question (FAQ) service, however this is not a main feature of this project.

Elements to be made:

· Plug-in for Gaim.

· Server-side broadcasting of banners according to users interests.

· Banner chat robot.

· Administrative tools to support business operations. This part might not be implemented in my 3rd year project, as this only is important as a commercial feature, and this project is not focussing on that aspect.

2. Theory of Natural Language Processing
The theory of natural language processing (NL-processing) is extremely important in the context of this project, as the chatbot needs to be capable of processing it. Therefore it is important at this stage to look at different approaches to NL-processing in the literature, providing a basis from which to choose approach in the later stages of the project. There are 2 major different approaches, which are described below:

· The first approach is to build an analyser or parser, which transforms the natural language into a semantic mapping or logical form (an understanding of the text) and then have a generator or conversational agent application, which translates the text into another language [1] or generates conversational communication. There are 2 different types of analysers; one implemented by Riesbeck, which by looking at one word at a time tries to predict the next word in a sequence, if the next word matches the prediction it starts build a conceptual dependency (as proposed by R. C. Schank [2]) of the text, if it does not match, it has to try to make a new prediction based on the other words in the sentence [3]. The other approach is to build a parser of the natural language which parsers e.g. English according to grammatical rules of the language. The base of the parser is the context-free grammar used in computer languages, however there are many very advanced parsing methods available which help making a precise parse of the text; e.g. augmented grammars, that includes features in the grammar and statistical grammars, which by using statistics tries to eliminate ambiguities [4]. After or while parsing the text, a representation of the text is build, this representation could be predicate calculus [5] or by creating a logical form language [6]. The resulting representation is then used by the generator (conversational agent) to make a response based on the understanding combined with the knowledge database of the system, which includes perception of the world, beliefs, desires etc. [7]

· The second approach has been proposed and developed by Dr. Richard S. Wallace. The idea behind it builds on the fact, that human conversations are not random, and that the expected utterances in such communication follows a Zipf curve. This means that even though there might be thousands of possible grammatically correct responses to an utterance, it is only a very small fraction of these possibilities that would actually be used in normal communication [8]. To explore this fact Wallace has constructed a programming language AIML (Artificial Intelligence Markup Language), which can be used to build a knowledge database, which describes the different responses to input based on the history of the conversation. AIML is an interpreted language, which is used by a parser to determine the correct response to an input. The parser will take the input and compare it with the AIML categories and match the pattern of the input with the best fitting category, which in turn determines the correct response [9].

The 2 different approaches use 2 completely different paradigms. The first approach, which is mostly used in academic studies, seeks to build applications that “understand” all natural language. The second on the other hand is more pragmatic in its approach, as it targets a subset of a language by building responses to expected inputs, hence making the application more efficient at communicating, however it would be almost impossible to use in any other applications involving natural language such as translation.

3. Analysis
When looking at this project it is obvious that the NL-processing is the key part of the project looking at it academically. Therefore the other parts of the project can be designed and implemented in a simple way, which would be insufficient for a commercial application.

The banner exchange part can, for the purpose of this project be implemented as a simple banner server, which send banners randomly to the users of the system. This would not be sufficient in a commercial application, as the customers would want to target the advertisements to the users, however in the scope of this project that is not important. The same goes for the plug-in, it is not important to make it user friendly to install and use it, as long as it has the capabilities to show incoming banners and communicating back to the server if the banners have been clicked.

Now looking at the important chatbot, as this part is a key part of the project, it is important to analyse, what it is supposed to achieve, and then look at which theoretical approach would be appropriate to use in the design and implementation of the robot. First of all the chatbot should be able to verify that the users have seen the banners. This is best done by making the chatbot pose questions about the banners, which have been displayed to the user, and the expecting an answer from the user, and then by analysing the answer try to extract whether the user has seen the banner or not. The chatbot should also be able to act as a salesman of the products, it is therefore important to look at how a salesman normally works. As I have worked 7 years as a salesman before attending university I will draw on this experience. First of all it is expected that the salesman have some knowledge about what the product is, so if a potential customer has questions he can answer them, or possibly show where the answer is. An important technique for a salesman is to ask leading questions to the customer, who then by answering the question inevitably has to be interested in the product. For instance if a salesman wants to sell cheap telephony, he does not start by asking if the customer wants to change service provider. No he starts out asking about the customers usage of telephony, and in the process tries to get the customer to say that he thinks it is expensive, if he says that, a sale is almost inevitable!

So the chatbot needs to ask questions and respond to the answers, and be able to recognise when a user asks a question and respond to it appropriately. This indicates that the second approach to NL-processing fits best in the scope of this project, as it is a targeted type of communication that needs to be implemented. It would be possible to use the first approach, however it would be an inefficient way to do it, as there are only a few expected answers to a question. If using the first approach I would need to implement an English parser, which should generate the semantics of the text, but for instance if the chatbot has asked a yes/no answer, there is not many ways to answer that question meaningfully, so it would be more efficient to use that knowledge in this context. For this reason the second approach will be used in this project.

4. Requirements Analysis Specification

As this project has been proposed by myself, there is no need to make a formal requirements elicitation, as I am the customer of the system, so the introduction of the project should be sufficient. Regarding the users of the system, there is no other requirements from them than that they can use their chat service as they normally do.

The criticality of the different parts of the system will be explained in this requirements specification. As all parts in this project are computer scientist there is no need for a requirements definitions document.

4.1. General Description

· Product Functions
The resulting product will be a service, which shows banners to the users while they are chatting. The selection of banners will be made on the basis of interests of the user. There are 2 chat robots as part of the service: One that works as a help and FAQ service. One, which chats to users to check if they use the service and acts like a salesman at the same time.

· Similar System Information
There is no similar system on the Internet at the moment. There are several services where you get paid to view ads, either actively as in PTC (paid to click) or inactively by putting a banner on the screen (paid to surf.) However this service will be much more powerful for the customers as the service will have a clear knowledge of whether the users watch their banners or not, and for the users as they get paid, while doing something they do anyway, chat. The system will be a stand-alone service, as it will not be doing any transactions with any other systems.

· User Characteristics
Users of the service will be chatters. They will have a good knowledge of general computer usage, or else they could not chat, however the service should be easy accessible to ease the transition to the system, as it can’t be expected that they are operating system super users. However for the scope of this academic project it can be asserted that the users have great knowledge of computers, as the product resulting from the project isn’t a commercially finished product.

· User Objectives
The system should not disrupt the normal chat pattern of the users, as this would clearly make users turn away from the service.

4.2. Functional Requirements

· Banner displaying
· Description
Banners needs to be shown in a clear manner together with the client software, which is used to chat. It is important that they change often, at least every minute, so that the user will notice the banners as often as possible. Banners should be selected on the basis of the user’s interests. These will be gathered when the user sign up. Banners should be displayed when the user is on-line having the chat client open.
· Criticality
Banners are a core functionality of the system. If the banners aren’t showing or not changed regularly, the user will get the feeling that the service isn’t working. The system needs to ensure safe transfer between the client and the server side to avoid exploitation of the system.
· Technical issues
There needs to be a database of all the banners available, including which interests which triggers them. It is also a need to store how many times a banner has been shown, clicked and remembered during conversation with a chat robot.
· Cost and schedule
This requirement is relatively easy to implement, so the cost incurring is low compared with some of the other functionalities. An estimate of 5 working days to build a safe plug-in and 5 working days to finish the server side. 1 day is estimated to build the underlying databases. A prototype of this functionality needs to be working before any other part of the system can be implemented.
· Risks
This requirement simply needs to be implemented. Without it there will not be a system. However for the purpose of this project some functionality can be left out, e.g. some of the statistical features such as numbers of click on banners and the distribution of banners according to interests.
· Dependencies with other requirements
All other functionalities of the system practically depends on this functionality, as the selection of chats are made on the basis of which banners the user has seen, however this functionality does not depend on any of the other functionalities of the system, hence it should be able to run even if one of the other parts of the system is down or needs maintenance.
· Chat robot (Banner verification / Salesman)
· Description
The chat robot will be initiating chat with the users, so that the system as a whole can verify that the banners are seen, and while verifying the banners it will try to work as a salesman for some of the products. This should be felt by the user as a non-intrusive sales chat partner, who just wants to chat once in a while about products. The feedback from the user should be stored both to give feedback to the customers as to how efficient their banners are, but also to keep the users’ accounts up to date. There should be bonuses to users who are alert and watches the banners, and who chooses to act on the advices of the salesman. The user should be able to start chat with the chatbot to gain knowledge about the products.
· Criticality
This is the part of the system, which makes it significantly different from existing “paid-to” services, as this service will be giving direct feedback from the users to the customers, and at the same time act as a salesman on behalf of the customer. It is a crucial part of the project.
· Technical issues
The chatbot should function as any other chat buddy that a user could have, so it needs to be implemented as a regular chat client.
· Cost and schedule
This is where the most of the work lies in the project and the estimated time to make it would be 4 full time weeks. The work on the chatbot can begin when a banner displaying prototype is ready.
· Risks
This functionality is crucial for the system and it needs to be implemented for the system to be working.
· Dependencies with other requirements
Obviously the knowledgebase of this chat robot will change as to which banners have been shown, and what products, which are being promoted. So the databases needs to be consulted each time a question is asked to ensure that the chatbot does not start to chat about unknown material.
· Administrative tools
· Description
New users should be able to create accounts. Old users should be able to change addresses, passwords, e-mails etc. The system owner should likewise be able to keep accounts up to date in regards to accounts, payments and ban users who are misusing the system.
· Criticality
This capability is crucial for the system to bring in a revenue, however as a 3rd year project it is not, as I will be focusing more on the basic functions of the system and the creation of the chat robots.
· Ad creation / maintenance
· Description
This requirement can be split in to 2 sub-requirements; banners and chat ads. Banner ads should be easily created with a URL of the banner and a link to the site which it is connected with. With chat ads there needs to be the capability to make a knowledgebase of the product in AIML.
· Criticality
This requirement is crucial for system to work commercially, however for this 3rd year project it is sufficient to build a system, which works with a constant knowledgebase, so that it can be shown how the system will work eventually.
· Technical issues
The banner part is a simple issue, however the chat part is very complex and will probably need a special program, which makes AIML production easy. However this will not be part of the 3rd year project.
· Dependencies with other requirements
This part is highly dependant on the banner databases and the knowledgebase of the chat robots.
4.3. Interface Requirements

The system is a standalone system; however there are several interfaces to other systems involved.

· User Interfaces
Users will be using the system through their preferred chat client (in this 3rd year project through Gaim,) and therefore won’t feel like they are using another system than they are used too through Gaim. The banners will be shown together with the Gaim client, and the chat robots will communicate through Gaim. It is only the user maintenance and customer maintenance that will need a specific user interface, which is not implemented in this 3rd year project.

· Hardware Interfaces
There are no special hardware requirements, so all interfaces to hardware is done through programming languages and the operating systems.

· Communications Interfaces
The chat is maintained by the Gaim chat client, however the chat robot interfaces with Gaim as normal chat clients using XML (jabber) over the TCP/IP protocol.

4.4. Performance Requirements

There are no strict bounds on performance, as the banners only need to change every half-minute, and that the chat robots should communicate as fast as humans.

4.5. Other non-functional attributes

· Security
It should only be possible to use the system by registered users. The internal parts of the system (e.g. databases) should only be accessible by the server part and the super user. For the scope of this project the super user will be the developer.
· Reliability
The banner distribution should be functioning reliably. As the final system is working on the Internet it should be able to run 24/7 with a very low fault rate. The different parts of the system should be working interdependently, so that if one part experiences a fault the other part should still be functioning.
· Maintainability
The system should be build with maintainability in sight, as it should be easy to extend and introduce new functionalities.
· Portability
The server side does not need to be portable as it should only be running on one computer, however it should be possible to port the client side to other operating systems.
· Extensibility and Reusability
In the long run (not covered in this project) there should be made plug-ins for several different chat client systems.
5. Design
As it can be observed from the requirements analysis there are 2 core requirements the banner displaying and the chatbot. The banner displaying consists of 2 parts; the client part which is actually displaying the banner, and the banner server, which sends out messages containing URL’s for the banners to the online users. To assist both parts there is a need for a database system that store knowledge about the users, customers and their banners. The administrative and ad maintenance requirements will not be designed and implemented in this project.

Figure 1 is an overview of the complete system within the context of this project.

[image: image1.png]Figure 5.1.

The different parts are inherently different in composition, because of the underlying dependencies and languages to be used, so the design of the parts will be done part by part.

5.1. Client plug-in
The client plug-in is going to be implemented for the Gaim chat client, which is an opensource multi-protocol chat client that supports plug-ins [10]. The user interface of Gaim is build using the GTK library and the core libraries of Gaim use glib extensively. When making plug-ins for Gaim, it can be done by using Perl, Tcl or c [11], but for this project c should be used, as this approach gives more control over the plug-in. The documentation on how to write plug-ins for Gaim can be found in the package when the source code is downloaded. There are also several plug-ins with the distribution, which shows how to make simple plug-ins for the chat client; these guidelines should obviously be followed when making the plug-in.

5.1.1. Client events
As Gaim is developed using Glib the c code is not the usual procedural c code. The library gives low-level functionalities that are usually seen in object oriented programming such as an object system and events loop [12]. As Gaim operates and maintains all the functionalities of the chat client, the plug-in is responsible of handling events that arise during the operation of Gaim. The plug-in should be able to display banners and send feedback to the banner server, when the user clicks a banner. The easiest way to implement the banner part is to send messages from the banner server about the url’s of the banners via the existing chat protocol and then let the plug-in capture the message and use the information within the message. Figure 2 shows the steps needed in the implementation.

[image: image2.png]
Figure 5.2.

The plug-in has to capture all incoming messages. If the message is from the banner server then the plug-in knows it is a banner message, because that is the only kind of message the banner server sends. Figure 3 illustrates the events needed when a banner has been clicked.

[image: image3.png]
Figure 5.3.

5.1.2. Description of client procedures
These are the procedures needed to implement the client plug-in:

· Init_plugin

Needed by Gaim to initialise the plug-in.

· Plugin_load

Needed by Gaim. Is called when the plug-in has loaded. Is the perfect place for initialising resources, which the plug-in uses.

· Plugin_unload

Needed by Gaim. Called when plug-in has to be unloaded from Gaim. Perfect place to free resources used by plug-in.

· Im_receiving_callback

Should be registered in Plugin_load to be called each time a message arrives (receiving-im-msg event.) This procedure should take care of the “incoming banner event” described by figure 2.

· Button_press_callback

Should be registered in Plugin_load to be called when the window, which contains the active banner, has been clicked.

· Delete_callback

· Should be registered in Plugin_load to be called when the window, which contains the active banner, has requested to be closed. The reason for this callback procedure is that if such a request has been made, then the window should not be closed.

5.1.3. Client datastructures
The datastructures of the client should as much as possible use the predefined datastructures of Glib, GTK and Gaim. These variables will be needed:

· GtkWidget *image

To store the image of the banners.

· GtkWidget *event_box

As neither images nor window are clickable in GTK, it is needed to have a wrapper to handle the banner clicks.

· GtkWidget *window

To store the window containing the banners.

5.2. Banner server
This part of the system will be built from scratch in Java. The communication between the server and the clients will be done using the Japper protocol though the Smack library, it is a an opensource XMPP (underlying Jabber protocol) library, which helps with connecting to Jabber servers and sending messages to users.

The banner server should consist of 2 major classes. One which encapsulates the login, startup and windowing aspects of the server; this class is called Loginner. The other class encapsulates the main aspects of the banner server such as sending out banners and database maintenance; this class is called Chatter. There will be an internal class within the Chatter, which handles the actual banner sending. The reason for making it internal is that the banner sending should be encapsulated in a class, but it is a specific part of handling the banner sending, hence should have access to the private parts of the Chatter class.

5.2.1. Usecases
The following figures are the identified usecases of the banner server. The first scenario is the start up of the server, which is initiated by the admin user of the system. This should rarely be done, as the service in theory should be running 24/7 on the Internet.

[image: image4.png]
Figure 5.4.

The next usecase is the actual banner sending method. It is started by an internal timer, which ensures that the banners are send regularly. To send a banner it is needed to select a specific banner, and then after it has been send, the databases should be updated.

[image: image5.png]
Figure 5.5.

Even though the service should be running 24/7, it should be possible to shut down the service, for instance in the case of maintenance of the system. To do this the banner timer should be stopped and the services used should be closed.

[image: image6.png]
Figure 5.6.

When a user clicks a banner on his machine, this should be updated in the server databases.

[image: image7.png]
Figure 5.7.

Under the Jabber protocol a Jabber server stores a roster for each user with information of the users who subscribe to receive presence information about the user. Each time somebody wants to subscribe to another user a subscription request is being send to the user. The user has to handle this request either by accepting or declining the subscription. The banner server should handle this scenario by checking if the requesting person in fact is a registered user of the services responding accordingly.

[image: image8.png]
Figure 5.8.

5.2.2. Sequence diagrams
From the usecases the following sequence diagrams with the interactions needed has been build.

The first diagram shows the login process. The services need to be started before the banner sending, as they are used to perform the sending.

[image: image9.png]
Figure 5.9.

The actual banner sending procedure is straightforward. The selection of the banner and the update methods use the database of banners, and the actual send uses the Jabber connection.

[image: image10.png]
Figure 5.10.

Logging out is the opposite of logging in; hence the logout methods are performed in reverse order of the login.

[image: image11.png]
Figure 5.11.

When a user clicks a banner a message is produced by the client plug-in and sends to the banner server. The banner and user should be extracted from the message and the database should then be updated accordingly.

[image: image12.png]
Figure 5.12.

If a subscription request arrives from a potential user it should be dealt with, either by accepting the request if the user is know, or by declining the request.

[image: image13.png]
Figure 5.13.

5.2.3. Methods
The following is a description of the needed methods of the classes. It is permissible in the implementation stage to add helper methods to heighten clarity of the code.

· Loginner: This class will extend the Frame class of the java standard library to make it a windowed class.

· main: used by java to start application. Should only instantiate Loginner, and make the window visible.

· Loginner: Constructor method. Has to start up XMPPConnection service, and the mySQL connection.

· paint: Used by java to paint the window frame.

· shutdown: Has to shutdown all services.

· MyWindowAdapter : Extends WindowAdapter. Is needed to control window messages from Loginner.

· MyWindowAdapter: Constructor method. Register the Loginner frame.

· windowClosing: Should close the window and initiates the shutdown of services. Closing the window is the only way to stop sending banners. There are no other window messages used.

· Chatter: This class is used to listen for messages from the users, and it controls the banner sending.

· Chatter: Constructor method. Should prepare connection for sending banners. Incoming chat is handled by the Smack PacketListener class. This method should instantiate one PacketListener to handle subscription requests only allowing users already in the database, and one to handle click feedback updating the database accordingly. The bannerTimer, which controls banner sending, should be started here and registered to the BannerSender class.

· Stopbanner: Should stop bannerTimer and remove the PacketListeners.

· BannerSender: Class extends the java standard class TimerTask to enable it to be registered to a Timer object. It is internal to the Chatter class as this class encapsulates all chat activity.

· run: Method required by TimerTask. This is the method, which is called when the timer event happens, hence the sendBanner method should be called.

· SendBanner: Sends a banner. The SelectBanner and UpdateDatabases methods are used within this method.

· SelectBanner: Selects a banner from the database to send.
· UpdataDatabases: Updates the database.
5.2.4. Data Structures
The following describe the data structures needed to implement the different classes.

· Loginner
· XMPPConnection con: Class from the Smack library that encapsulates a connection to a Jabber server. Will be used to send and receive messages from the Jabber protocol.

· Connection sqlCon: Class that encapsulates a database connection.

· Chatter: Will need similar objects as Loginner

· Timer bannerTimer: Timer object to send events to the BannerSender class.

· PacketFilter filter: Class, which filters messages from an XMPPConnection from the Smack library. Here should be used to capture presence messages.

· PacketListener listen: From the Smack library. Listens to an XMPPConnection using a filter. Should handle the subscription (presence) requests from users.

· PacketFilter filter_fb: Should capture feedback messages from users.

· PacketListener listen_fb: Should handle feedback messages.

5.3. Chatbot
As it has been decided that the chatbot should be designed using AIML the chatbot can be split into 2 parts. First of all the interpreter part of the chatbot and secondly the actual AIML code, which is used by the chatbot to understand the users chat. The design of both parts will be discussed in the following.

5.3.1. Chat Interpreter
AIML is an interpreted language, and there are many interpreters available for different platforms and computer languages. The chosen interpreter for this project is called ProgramD. It has been chosen as it is implemented in Java. ProgramD uses the AIML code to parser inputs from user through a class called a multiplexor. A class called AliceChatListener is extended for each chat protocol, it interacts with the chat servers extracting the user chat and then through the multiplexor gets the utterances of the chatbot, which is send back the chat server. As no Jabber listener has been implemented for ProgramD such a class should be implemented.

This class sits between the user and the chatbot; therefore it is the most logical place to make decisions to ask the users questions about banners they have seen. A timer should start this.

This means that there are 3 usecases. The first is receiving a chat message, which includes extracting the text from the message, get a response and send that response. The second usecase is when a subscription request arrives, which should be handled just like the banner server handles them, and finally the third usecase that is initiated by a timer, which is asking a user a question about a banner. This includes deciding, if the user is ready for a question and which program to ask a question about, get a question from the chatbot, and send it to the user.

5.3.1.1. Sequence Diagrams
These are the sequence diagrams derived from the usecase explained in the previous paragraph. The first diagram shows the primary functionality of the chatlistener, the actual processing of chat.

[image: image14.png]
Figure 5.14.

The second is describing the same functionality as figure 5.13.

[image: image15.png]
Figure 5.15.

The last interaction is when the timer initiates questions to be asked. Here the list of all users should be taken from the database, and the all users who are present, but not chatting to the chatbot should be asked a question. This should happen approximately every half an hour, but for testing and developing purposes this should be set to happen much faster in this project.

[image: image16.png]
Figure 5.16.

5.3.1.2. Methods
The following methods are required to be implemented, when extending the AliceChatListener class. The name of the class will be AliceJabberSmack.

· AliceJabberSmack: Constructor. Should call the constructor of AliceChatListener.
· checkParameter: This should check the user-defined parameters.
· shutdown: Is called when ProgramD is closing, hence clean up should be performed here.
· run: Is called when ProgramD is ready to start ChatListeners. Should start up the XMPP connection and SQL connection, and register packetlisteners (described in section 5.2.4) to handle presence and message packets arriving from the XMPP connection according to the sequence diagrams, hence the subscription requests and chat handling interaction will be registered here. Each time a user has sent a chat messages the time should be stored in the database to enable the system to find users who are actively chatting to the chatbot. This is used when asking questions.
AliceJabberSmack should also implement the asking of questions. This will be done in an internal class. It is internal as AliceJabberSmack already extends AliceChatListener, and to use a timer a class needs to extend TimerTask, and java does not support multiple inheritances. These are the methods of the AskQuestion class.

· run: Called when a timer event occurs. Should find all available users and start the question. If the user already has been asked a question, which hasn’t been answered within reasonable time, the question should be stored as wrongly answered.

· sendQuestion: This method has to find the advertised program, which is been asked about. It should also check to see if the user is actively chatting to the chatbot, if so the question should be discharge. If not discharged the actual question should be found and sent and the database should be updated.

5.3.2. AIML
The AIML code is the core of the chatbot, which is used to generate the responses. Usually chatbots are built with the purpose of conversation, and that is also the underlying paradigm behind ALICE, the chatbot that triggered the development of AIML. But in this project there is a purpose with the chat, it is not merely for the sake of conversation, but to sell and promote companies. In order to do that there is a need to make a stringent structure within the AIML, to enable to build generic question / answer trees, which are applicable to all companies after company dependent data have been added. So by using non natural language code within AIML a “procedural” language is being build, so that within a language tree certain knowledge about any needed company can be fetched and used.

The chatbot has to consist of 2 major part: The question / answer part and the more general salesman / knowledge part. The question / answer part should be designed with a trigger input from the chat interpreter, which in turn makes the chatbot pose a question depending on the trigger input. Then the chatbot will be waiting for a reply, the databases will then be updated accordingly. If no reply comes, then the interpreter should catch that and update the database.

[image: image17.png]
Figure 5.17.

It is important that the trigger input is a unique input that is very unlikely to be seen from a user, as regular chat. The format of the trigger input that should be used will be the program name followed by the word question without a space, e.g. MISTYANDSAMSQUESTION. This should make the AIML change the topic variable to MISTYANDSAMS and then select a random question. By changing the subject to MISTYANDSAMS the chatbot will expect an answer, if another input comes, which does not match an answer, then the ordinary chatbot part will take over and change the topic accordingly.

The salesman / knowledge part of the chatbot should be working in a more complex way. The first level of the chatbot is the situation where a conversation has just begun, or a specific chat has finished and a new should start. In this situation the chatbot should first of all decide which program to talk about. Usually a program will be found, however if the user has indicated that he has not got an interest in any or is already a member of all of the programs a generic chat should be started. In this situation the chatbot will ask a simple question with no response tree for the scope of this project, as it is assumed that in the final product there will be so many programs advertised, that this situation is arbitrary. When a company program has been chosen a subject / topic should be decided and the output produced. This makes the chatbot go into the second level of the AIML code.

[image: image18.png]
Figure 5.18.

In the second level consists of the expected generic inputs and responses for that specific level, which depending on the inputs of the user finds the generic response and by using the specific knowledge bases of the different programs creates the specific response in the situation. If the input from the user is not understood the chatbot either chooses to begin a new chat or asks a specific question within the scope of the second level.

[image: image19.png]
Figure 5.19.

The different levels and knowledge bases of the AIML code should be encapsulated in different files to enable a clearer overview. This means that these AIML files will be needed:

· firstlevel: Generates new chats when needed.

· company-procedure-calls: Knowledge and help procedures used while chatting chat, e.g. find a random company program, update database procedures, and responses when a sales pitch is needed about a program.

· general: Responses when no topic is set, but the user might talk about an unknown advertised company.

· bannerquestion: The question / answer part of the chatbot.

· “program”-specific: Files for each advertised company program. These files should contain:

· Corrections to misspelling and derivations of the program name.

· Individual chat when a topic is not known but the company is.

· Topic specific knowledge about the company.

· “chat”: Files consisting the main part of the second level. They hold the different chat trees to the chats initiated in the first level.

· salutations: Enable politeness. Could be modified from ALICE file.

· adverbs: Adverbs usually only indicate degree of meaning, not the meaning as such, and can for that reason be left out of the context. This file should do that. Could be modified from ALICE file.

· interjection: Generates the meaning from answers. ALICE file could be used.

· synonyms: Should find synonyms.

5.4. Database
The underlying database of the system is implemented using mySQL, as it is free to use in non-commercial applications, and it is widely supported. The following tables with are needed to support the project. If this were to be commercially deployed more information would be needed. Many of the fields are self-explanatory, so a description is only given for the less obvious.

· User
· Primary Key: Chat_address
· Name
· E-mail
· Customer
· Primary Key: Customer_id
· Name
· Address
· Banner
· Primary Key: url
· Primary Key: click_url
· Foreign Key (Customer): customer_id
· Program
Used by AIML to distinguish the different advertised programs. The reason for this is to allow several companies to advertise the same program.

· User_banner
· Primary Key (User): Chat_address
· Primary Key (Banner): url
· Count
Number of times the user has be displayed the banner.

· User_chatting
· Primary Key (User): Chat_address
· Chatting_time
Last time the user was chatting to the chatbot.

· User_interest
· Primary Key (Banner): Program
· Primary Key (User): Chat_address
· Interest
If interest has been expressed during chat this will be recorded here.

· User_click
Number of times the user has clicked the banner.

· Asking_time
Last time the user was asked a question about the program. Used to determine, which program to ask about next.

· User_question
· Primary Key (User): Chat_address
· Primary Key: Asking_time
Time a question was asked.

· Answer
Was the resulting answer true, false or unknown?

5.5. Discussion of Design Process
The major difficulties, which occurred during this project, were experienced while designing the project. Especially deciding which theory, protocols and programs to choose was a non-trivial task. Deciding which natural language processing theory to choose was the first big obstacle, as it would be the core of the project, but after researching the theories it became apparent that using AIML would be a feasible approach that would guarantee a design, which would be possible to implement, whereas the implementation of the more academic approaches possibly would take too much time for a 3rd year project. For this reason it was decided to design an AIML solution.

Another problematic area was deciding which chat client to use. It was initially intended to use Microsoft Messenger, but while laying the ground for the design, it was discovered that Microsoft does not allow access to the new API’s of that program. Only the old API’s are available, and as nobody uses them it would be a bad choice, hence another client would be needed. After researching the opensource clients it became apparent that Gaim was probably the best choice, as it is a client with a lot of support and maintenance, and that development of plug-ins are possible with complete API documentation. After this choice was made, the next question on hand was which chat protocol to use. Gaim uses Jabber among others, and it is a protocol, which is widely used, hence I decided to use this protocol.

When starting up the design of the AIML code, it became apparent that another design would be needed than the usual approach used by other AIML programmers. I had looked at the ALICE code to gain experience in how AIML code was usually designed and implemented, and it seemed that the normal approach was to write as much code as possible to enable the chatbot to talk as much as possible. However this was not the intention with this chatbot, because there would be a need to be able to add new programs easily. If the usual approach were taken that would mean, that for each program, a complete new chat structure would be needed, so a way to build generic chat structures was needed. This has been achieved with the above design.

6. Development and Implementation
The following is a description of the implementation of each part of the design detailed above. It is done with emphasis on each program of the complete system. The code listing can be found in the appendix.

6.1. Chat client
At the core of the chat client functionalities is the plug-in for Gaim. It is called banner.c, and it is compiled using the make file supplied by Gaim, which uses gcc to compile. Gaim on its own is multi platform, but the plug-in has been developed for Linux using Fedora Core 3. It obviously uses libraries from the Gaim API, but it also uses sys/types.h and unistd.h, as it uses fork to generate new processes, when a user clicks a banner or a banner is downloaded.

Banner.c implements the procedures described in section 5.1.2. The 3 procedures, which are needed by Gaim, are straightforward, as they follow the rules set out by Gaim, except for plugin_load, which also register the callback functions for receiving instant messages and banner clicks. It also creates space in memory for the banner functionality.

The callback function button_press_callback implements the response to a banner click (figure 5.3), this has been done by forking a child process, which executes the java program CFB, where a feedback message is sent to the banner server. The reason for not doing that internally within Gaim is, that I did not find a way to send instant messages without displaying them on the screen. These messages should not be shown, as that would cause a major security risk, so it had to be implemented external of Gaim, however there must be a way to do this from Gaim, which in a finished product should be used. The parent process continues by executing Mozilla showing the URL advertised by the banner.

The other callback function of banner.c is im_receiving_callback, which implements the algorithm for instant messages reception (figure 5.2.) The banner server only sends out these messages, so the message is simply the URL of the site promoted followed by the URL of the banner separated with a space. As Gaim receives the message through the Jabber protocol the message is surrounded by the xml code <body> </body>, which first needs to be striped away. The actual download of the banner is performed by the java program downfile, which downloads files from the Internet. It was the intention to do this using the c library curl.h, which is build to perform exactly this task, however on my fedora system that library simply would not work. It was possible to install and compile, but whatever I did runtime errors would always occur while initialising the curl variables.

CFB.java creates a connection to the Jabber server and sends messages. It expects 3 input parameters. The 1st is the name of the account to send it to, the 2nd is the URL of the banner clicked, and the 3rd is the URL of the homepage advertised.

The java program downfile downloads the file, which is referenced by the input parameter, integer for integer.

6.2 Banner server
The design of the banner server as described in section 5.2. is implemented in the Loginner.java. It has been built using java 1.5, but has not used any of the new special features, and for that reason it should be possible to compile it with older versions at least down to 1.2. The libraries used by the classes in this file are the standard java libraries awt, util, sql and the Smack libraries from Jivesoftware. Awt provides the windowing, util the timer and sql the database facilities.

Implementing this application did not cause any serious problems, as the design was broken down into small pieces that were easy to follow.

The Loginner class simply connects to the XMPP and mySQL server using the jdbc driver. After that, as the design prescribes, it instantiates the Chatter object. The algorithm of the constructor method is as follows:

1. Get connection to Jabber

2. Get connection to mySQL

3. Make presence know to Jabber server

4. Register PacketListener to handle Subscription requests

5. Register PacketListener to handle feedback messages

6. Start banner timer

The subscription PacketListener works as follows:

· If packet is presence packet of type subscription then

a. Get user name

b. If user is in database

i. Create a presence subscribed message

ii. Send it

iii. Create a subscribe request message

iv. Send it

c. Else

i. Create a presence unsubscribed message

ii. Send it

The feedback PacketListener algorithm:

1. Get message

2. Get user name

3. If user is in database

a. If message starts with CFB

i. Extract URL of advertised program

ii. Extract URL of the banner

iii. Add 1 to the count element of the table user_interest which matches both URL’s

The BannerSender class acts on the timer in the Chatter class. Every time the timer ticks the class runs through all of the users in the database, checks if they are available. If they are, then a banner is selected and the URL’s of the banner is sent to the user.

6.3 Chatbot interpreter
The interpreter between Jabber and ProgramD is AliceJabberSmack.java. It as compiled using the build.sh script provided by ProgramD, which used java 1.5 during compilation. The standard java libraries sql and util are used, as well as the Smack libraries. As it is part of the alicebot package it uses libraries from this package as well. For it to work the AliceChatListenerRegistry.java file had to be changed to register this new listener to ProgramD.

The problems, which arose during implementation was all connected to the expected structure of a listener by ProgramD. There were absolutely no documentation on how to build a chat listener, so to create the design and implement it I had to go through ProgramD’s source code to see what was expected from and needed by a chat listener. This was a very difficult task, where I tried to make a mock listener, which did nothing except for being registered. It was the registration part, which was difficult, as I had to go through the source code to find out where that happened. After this was achieved, the design was created, and I could start to build the actual implementation.

The actual code, which starts up the listener / interpreter is in the constructor method and checkParameter. All the constructor does is to call the super and checkParameter verifies that the parameters are valid. Shutdown closes down the sql service and stops the timer, which initiates the questions. It is in the run method that the actual message handling is implemented. First a connection to the XMPP server is made, then the askQuestion object is instantiated and the timer is started. After that the connection to the mySQL database is made and the presence of the chatbot is made public by sending a presence available message to the Jabber server. Then a packet listener to handle subscription request is instantiated, it is similar to the one in the banner server. The last thing remaining is to instantiate a packet listener, which handles the chat messages. The handling of the messages is as follows:

1. Get input

2. Get user

3. If user is in database

a. Prepare the input for AIML using the toolkit removemarkup method.

b. If length of input greater than 0

i. Get response using the multiplexor class of ProgramD

ii. If length of response greater then 0, send it to user.

The AskQuestion class has 3 methods. The timer calls the run method, it is here that the database is checked and updated. It is done using this algorithm.

· For all users in the user_chatting list, do.

1. If user is unavailable remove him from the list, else

2. Get last time an unanswered question was send

3. If an unanswered question exists

· If time since asking is longer than accepted

· Change database to wrong answer

· sendQuestion

4. else sendQuestion

The sendQuestion method send a new question to all available users who has not chatted to the chatbot since the last round of questions were send. First it checks that the user has not chatted with the chatbot, if he has not, then the program, which has not been asked about for the longest time is found. A question is found using the multiplexor and it is to the user. Finally the user_interest and user_question tables are updated. The getProgram method finds the program by a simple sql call.

6.4. Chatbot AIML code
Before starting the discussion of the actual implementation a short introduction of AIML code is needed, as it is a unique programming language not know to many. AIML is a XML language, which consist of categories. Each category consists of a pattern and a template. If the pattern matches the input, then the template is used / executed. Categories can be included within topics, which describes special situation categories. A that tag can be included between the pattern and template; this tag is used to match the last output of the chatbot. Patterns can consist of uppercase letters and numbers and the 2 wildcards _ and *. The _ means matches anything, and * means matches anything if nothing else matches. The usual template consists of responses, but it can also be system calls, conditions, new patterns to match, topic changes etc. This is intended as a small introduction to AIML, to learn more about the AIML consult the bibliography.

The first level of the AIML code is in the file firstlevel.aiml. AT the core of the file is the category, which matches everything, if no other category matches the input. If this happens a new start is initiated, by using the srai tag with the words RANDOM NEW START. This starts the process described in figure 5.18, by first matching the categories with the pattern PROCEDURE RANDOM COMPANY NAME, which changes the prefix company to a randomly. If no suitable company can be found the company prefix is changed to NOCOMPANY. If a company has been found a new chat is started by matching RANDOM COMPANY CHAT, which finds a chat to send as response. The topic is change accordingly. This is the end of the first level and the next level is started.

The second level mainly consists of categories with in topic tags to give more control of the chat structure. The programming of the chat has been done by imagining what a user would respond to the different output from the AIML code. It is problematic as it is a certainty that one single person cannot think of the different responses 1000’s of people might have, but it is a beginning, and if this application ever was to be used commercially it would be a must to test the chatbot with as many people as possible to ensure consistency in the chat. This is the way ALICE was created, and this is the way to do it when using AIML. The files described in section 5.3.2 have all been included. The “chat” files with implemented are (with their corresponding initial questions):

· consider.aiml: You should consider using “company”!

· tried.aiml: Have you ever tried “company”?

· extramoney.aiml: Do you like making extra money?

· influence.aiml: Would you like to have influence in your everyday life?

The biggest difficulty while implementing these files where, that ProgramD does not error check the AIML code, which means that even spelling mistakes in XML tags are allowed. For this reason even the smallest mistake in the AIML code could lead to mysterious behaviour, which could take hours to find the reason for. E.g. I once left out the / to end a tag. This results in ProgramD to believe that a new tag had started creating havoc in the pattern matching. It took 2 hours to find the error.

The question / answer part of the chatbot is simply a list of questions which is randomly chosen depending on the company in question, and then a series of categories for each question that tries to capture whether the responses from the users are correct or false.

Access to the databases is done with the 3 scripts getinterest.sh, setinterest.sh and setanswer.sh. As these scripts reside on the server side there is no need for security regarding the passwords.

7. Testing

When looking at the testing strategies used to verify the system, the system can be broken into to major parts. The NL-processing and the rest of the system, including the chat interpreter. Testing the NL-processing was difficult to do; the test strategy used is a black box model, where I chatted with the chatbot. The question / answer part of the chatbot was easy to verify. It was just a matter of getting questions and answers them, and sees if the chatbot recognised the right answer.

On the other hand it is not trivial to verify that a program is performing natural language processing. The only way to test such a system is by using it, chatting with the machine, hence trying to perform the Turing test [13] without the human competitor. While chatting to the chatbot, if a nonsense reply occurred, then it was obvious that an error in the AIML code was there, which needed to be changed. The nature of AIML is such that it constantly needs reviewing and changing, while users chat, to make the response patterns more and more human like [14]. From the testing I have done personally, it is apparent that this chatbot will not win in a Turing test, as it is very limited in its knowledge base, hence runs out of clever things to say about the products, I would estimate that people now could chat for about 1 minute before it runs out of clever things to say. It also lacks general knowledge that salesmen usually use to create connections with the customers, however it does perform some AI, and if the AIML code were extended it would become a very good salesman.

So the test strategy used for the chatbot has been a black box strategy, where I have chatted with the robot trying to find errors in the chat, but it has was not a pure black box as I obviously had programmed it myself I knew in which directions the chatbot could and would go. In a commercial product the final test should be done purely as a black box with regular users with no prior knowledge about the underlying code, however for this project the test performed has been sufficient to validate some AI capabilities.

On the other hand is the rest of the project. The test strategy, which was used here have primarily been white box testing. The reason for this strategy is mainly because a black box strategy seemed infeasible. In a black box strategy I would have to feed the system with input disregarding the source code and then compare the outputs with expected output, however this system is not strictly an input / output system. Obviously the database acts as and input feed for the banner server and the chat interpreter sending the data to the chat client, but at the current stage of the system the databases are pretty much settled, so if a more commercial version included error checks on the database entries these inputs could be assumed to be correct. On the other hand while doing a white box test I could look at the internal algorithms and make sure that all of the critical parts are working as expected.

To exemplify how I used this strategy I will here go though the testing of the SendBanner method of the BannerSender class. Looking at the source code several ways though the algorithm can be observed. First of all the while loop could be jumped if there are no users of the system, or it could be used if there are users. Then after that comes the if statements, which checks whether users are online or not. So in order to go though all possibilities of the code I had to create test scenarios, which ensured all of the code was used. Here are the scenarios:

· No users in the database: Jump the while loop and expect nothing to happen.

· Users in the database: Enters the while loop; expect a run though to user test.

· No online users: Jump the if statement; expect nothing to happen.

· Online users: Enter the if statement, expect a banner to be send.

Further more it was observed that the SelectBanner method was called during this run creating the need for even more test cases:

· No banners in the database: Expect a BannerErr, instead of banner send.

· Banner in the database: Expect a banner to be sending, as randomiser should give a valid banner.

After these observations the database was changed according to each test scenario and the banner server was started up and by observing the reactions to the Gaim plug-in it was verified the banner server was working as expected.

This procedure was done for each method of the source code, verifying the validity of the produced source code, and the results of this process showed that the code works as expected. The error messages produced though are not ready for general use as they are still intended for development, only printing out stack traces etc. The reason for this is that it is not a commercial product yet, and therefore the needs for error codes are aimed towards further development.

At the end of the white box testing a further test was performed. The reason for this test was to ensure that the system was capable of running for hours, checking to find any possible memory leaks. The system was turned on to send banners and chat questions, and the Gaim plug-in was started as well. The system was then left to run for a long period of time. In total it was running for 24 hours and after that it was still running without memory leaks it was proven to be sustainable.

8. Costings
As the project is now coming towards an end, it is the perfect time to look back and compare how the estimates in the preliminary report are compared to the real world. Back in June I estimated that the complete system would be 5520 lines of source code taking 28 months to finish, with an expectation of the productivity to be higher than usually (compared to the functional points theory.) In the interim report it was noted that it seemed impossible, as there were only 705 SLOC made, so to get to a matured stage some of the initial functionalities had been cut away.

The size of the full source code is:

· AIML code: 2726 SLOC

· Rest: 952 SLOC

· Total: 3678 SLOC

This is a bit smaller than expected initially; however at that time it was not even know how that chatbot was going to be implemented. This made the estimate highly superficial, and for that reason it was not even considered how much it would cost. But if I use the 28 months of work it would be approximately £56000 total. I have been using £100 a day because as a graduate student a salary at around £2000 a month is to be expected. However already in the preliminary stage I knew that the 28 months were infeasible, so after this stage I decided to use AIML, which has cut the development time / costs tremendously, as it is designed to aid the building of chatbots. It is a certainty that if AIML had not been chosen it would have been impossible to finish the project with a working chatbot.

The 28 months estimate was also an estimate for a full implementation of the project into a commercial application, to reach this stage many more lines of code would have been needed, and on top of that a rigorous testing phase would have been needed. The end result in this project has been tested, but not by others than me, which would have been the most important test of all, especially when looking at the chatbot.

The costs for the total project (excluding the report writing) has been as follows (A day is 8 hours of work):

· £1000
(10 days)
Feasibility tests

· $500

(5 days)
Research

· £16

Membership of ALICE community

· £200

(2 days)
Design analysis

· £300

(3 days)
Banner Server

· £500

(3 days)
Gaim Plug-in, including GTK+ research

· £300

(3 days)
Chat interface

· £700

(7 days)
AIML code

· £3516
(33 days)
Total

If report writing is included it adds up to around 50 days of full time work. There have been around 200 working days since the project started, which should mean that I have personally spend on quarter of my working days on the final project, however I have probably worked more than the usual worker does, as this is also my hobby and my professional work.

9. Conclusion

Throughout this project all of the requirements of this document has been designed and implemented, however all of the requirements from the initial stage has not been included in the project. It is not at a stage of commercial application with support for including new advertisements and user support functions. The chatbot is also limited in its functionalities, however the way it has been build aids further additions and alterations, this should have been done if more time had allowed it.

The feasibility and design phase of the project was a very rewarding experience as they at a very early stage showed that if an implementation of the requirements were to be achieved a rethink of the chatbot was needed, hence the decision to use AIML was made. However from an academic point of view it would have been more interesting to implement a statistical parser possibly with a neural network and a knowledge base to create the chatbot. This approach would have created a robot capable of learning new chat responses while chatting with users. This approach, however, would probably be in the scope of a PhD. study, and therefore discarded. The method used is not capable of learning with out supervision and implementation of a human administrator, hence the amount of AI in the project in hand is limited to a response tree to already known chat patterns.

It is the belief that the design method used has fulfilled the requirements of the project, by making an implementation feasible, hence it has been the correct method for this project, but if it had been a 2-year project the design should have been done as described above.

The approach chosen to use Gaim as the chat client has been a good choice, because it gave access to the source code of the underlying API. But later in the project it became apparent that a underlying banner receptor could have been used to show the banners instead of using the chat client as the reception point of messages from the banner server, in this way any chat client including MSN messenger could have been used without the access to the API of the programs making the application usable to all chat clients. This idea came too late in the project process to include it, however if used it would have fulfilled all the requirements, and been a more portable way of implementing it.

At this stage of the application the banner server merely sends out banners in a random way, this would not be an acceptable way of doing it in the final product, and if there had been more time the chatbot should have been able to extract user interests and then make this knowledge known to the banner server.

All in all this project has been a rewarding experience, which has given a lot of knowledge concerning natural language processing, and the applications which are using chat protocols.

10. References
[1]
J. Pitrat, An Artificial Intelligence Approach to Understanding Natural Language, North Oxford Academic Publishers Ltd, Oxford, 1988, pp 1.

[2]
As [1], pp 26-29.

[3]
As [1], pp 63-67.

[4]
James Allen, Natural Language Understanding, 2nd edition, Pearson Education Inc, 1995, pp 41-224.

[5]
As [1], pp 23-26.

[6]
As [4], pp. 227-258.

[7]
As [4], pp. 541-542.

[8]
Dr. Richard S. Wallace, The Elements of AIML Style, ALICE A.I. Foundation, 2003, pp 6-10.

[9]
As [8], pp 21-23.

[10]
Gaim homepage, http://gaim.sourceforge.net/about.php

[11]
Gaim homepage, http://gaim.sourceforge.net/api/pages.html

[12]
GTK+ homepage, http://www.gtk.org/

[13]
Alan Turing homepage, http://www.turing.org.uk/turing/scrapbook/test.html

[14]
As [8], pp 38

11. Bibliography
James Allen, Natural Language Understanding, Second Edition, Pearson Education, 1995.

Fernando C. N. Pereira and Stuart M. Shieber, Prolog and Natural-Language Analysis, CSLI, 1987.

J. Pitrat, An Artificial Intelligence Approach to Understanding Natural Language, North Oxford Academic, 1988.

Cécile L. Paris, William R. Swartout and William C. Mann, Natural Language Generation in Artificial Intelligence and Computational Linguistics, Kluwer Academic Publishers, 1991.

Richard S. Wallace, The Elements of AIML Style, ALICE A.I. Foundation, http://www.alicebot.org/documentation/, 2003.

Richard S. Wallace, AIML Overview, ALICE A.I. Foundation, http://www.pandorabots.com/pandora/pics/wallaceaimltutorial.html

Noel Bush, Artificial Intelligence Markup Language (AIML) Version 1.0.1, ALICE A.I. Foundation, http://www.alicebot.org/TR/2001/WD-aiml/, 2001.

R. Schank, Script Theory, http://tip.psychology.org/schank.html

NLP Group homepage, http://nlp.shef.ac.uk/

Ron Cole (Editor in chief), Survey of the State of Art in Human Language Technology, http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html, 1996.

John M. Lawler and Helen Alistar Dry, Using Computers in Linguistics: A Practical Guide, Routlegde, 1998.

Steven Bird, Ewan Klein and Edward Loper, NLTK Tutorial: Introduction to Natural Language Processing, http://nltk.sourceforge.net/tutorial/introduction.pdf, 2005. (I consulted version from 2004, but not available now.)

Steven Bird and Edward Loper, NLTK Tutorial: Programming Fundamentals and Python, http://nltk.sourceforge.net/tutorial/programming.pdf, 2005. (I consulted version from 2004, but not available now.)

Ewna Klein, Edwar Loper and Steven Bird, Elementary Language Processing: Tokenizing Text and Classifying Words, http://nltk.sourceforge.net/tutorial/tokenization.pdf, 2004.

Steven Bird, Ewan Klein and Edward Loper, NLTK Tutorial: Tagging, http://nltk.sourceforge.net/tutorial/tagging.pdf, 2005. (I consulted version from 2004, but not available now.)

Steven Bird and Edward Loper, NLTK Tutorial: Chunking, http://nltk.sourceforge.net/tutorial/chunking.pdf, 2005. (I consulted version from 2004, but not available now.)

Steven Bird and Edward Loper, NLTK Tutorial: Parsing, http://nltk.sourceforge.net/tutorial/parsing.pdf, 2005. (I consulted version from 2004, but not available now.)

Edward Loper and Steven Bird, NLTK Tutorial: Chart Parsing, http://nltk.sourceforge.net/tutorial/chart_parsing.pdf, 2004.

Edward Loper, NLTK Tutorial: Probabilistic Parsing, http://nltk.sourceforge.net/tutorial/pcfg.pdf, 2004.

Edward Loper, NLTK Tutorial: Text Classification, http://nltk.sourceforge.net/tutorial/classifying.pdf, 2005. (I consulted version from 2004, but not available now.)

Edward Loper, NLTK Tutorial: Probability, http://nltk.sourceforge.net/tutorial/probability.pdf, 2004.

PAGE
3

_1174462013

_1174462994

_1174739039

_1174739093

_1174904554

_1174907970

_1174902550

_1174739063

_1174738706

_1174462943

_1174462960

_1174462924

_1174461354

_1174461412

_1174461429

_1174461387

_1174293876

_1174294364

_1174210537

